Остаток сверхновой 3C 397. Это композитное изображение получено на основе данных, собранных космическими телескопами «Чандра» (рентгеновский диапазон, представлен фиолетовым цветом) и «Спитцер» (ИК-диапазон, желтый), а также в ходе обзора DSS (оптический диапазон, красный, зеленый и синий). Изображение с сайта nasa.gov
Железо и его ближайших соседей по таблице Менделеева — элементы от титана до цинка — называют «железным пиком», поскольку их содержание во Вселенной несколько выбивается из общей зависимости «чем выше атомный номер, тем меньше доля». Основной источник элементов «железного пика» в нашей Галактике — сверхновые типа Ia, то есть взрывы белых карликов, потерявших устойчивость из-за перебора массы. Проблема в том, что по расчетам, в которых заложены параметры наблюдаемых сверхновых Ia и их остатков, в Галактике должно быть меньше элементов «железного пика», чем получается по наблюдениям. Возможное решение этой проблемы дал анализ данных орбитальной рентгеновской обсерватории XMM-Newton, показавший, что остаток от вспышки сверхновой 3C 397 содержит слишком много ядер хрома и титана. Ученые объяснили это тем, что белый карлик, взрыв которого породил этот остаток, имел нетипично высокую плотность. Это значит, что, во-первых, «очень плотные» белые карлики все же существуют, а во-вторых, стало понятно, откуда могло взяться так много элементов «железного пика» в нашей Галактике.
Подавляющая доля химических элементов, слагающих окружающий нас мир, — это результат нескольких процессов, происходивших в разное время во Вселенной. В ходе первичного нуклеосинтеза (см. Big Bang nucleosynthesis), шедшего в первые минуты после Большого взрыва, образовались водород, гелий и чуть-чуть лития (большинство атомов этих элементов «родом» из тех времен), из которых затем стали формироваться первые звезды и галактики. Элементы вплоть до железа (атомный номер 26), — а из них в большой степени состоим мы с вами, — синтезируются в основном в термоядерных реакциях, протекающих в звездных недрах (см. Звездный нуклеосинтез). Более тяжелые элементы таблицы Менделеева являются продуктом по истине катастрофических процессов, сопровождающих последние стадии жизни некоторых звезд — взрывов сверхновых.
Вполне вероятно, что каждое ваше утро начинается со взаимодействия с остатком вспышки сверхновой типа Ia (читается «один а»): умываетесь ли вы водой, текущей из хромированного крана в ванной, насыпаете ли в чай или кофе сахар из никелированной сахарницы, поджариваете ли утренние гренки, переворачивая их на сковороде лопаткой из нержавеющей стали. Большая часть атомов (если говорить совсем строго, то — атомных ядер) элементов так называемого «железного пика» сформировалась и была выброшена в межзвездную среду во время термоядерных взрывов белых карликов в двойных системах. Такие взрывы в нашей Галактике случаются, в среднем, раз в несколько десятков лет. Это и есть сверхновые типа Ia. Элементы «железного пика» — это элементы от титана (атомный номер 22) до цинка (атомный номер 30). В этот промежуток попадают, в частности, хром, никель, железо и медь.
При вспышке сверхновой значительная часть ее вещества — в том числе и наработанные тяжелые элементы — выбрасывается в межзвездную среду. Миллиарды лет назад вещество от нескольких вспышек сверхновых собралось в том месте, где потом сформировалось Солнце и его планетная система — вместе с нашей Земля, ее полезными ископаемыми, а, стало быть, и всеми предметами, которые нас окружают. Ну и вместе со всеми нами, конечно, тоже. Железо в вашей крови (в составе гемоглобина) тоже когда-то было частью остатка вспышки сверхновой типа Ia.
На сегодняшний день астрономам известно около 300 остатков сверхновых в Млечном Пути. Остаток сверхновой — это вещество, разлетевшееся в межзвездную среду после взрыва, плюс компактный объект, если он остался «на месте» звезды. Основные сценарии сверхновых — смерть массивной звезды (и тогда ее внешние слои сбрасываются, а ядро коллапсирует, порождая тот самый компактный объект — нейтронную звезду или черную дыру; это сверхновые типа Ib/c и типа II) либо взрыв белого карлика, который полностью его разрывает (сверхновая типа Ia). Выброшенное вещество тормозится межзвездной средой и продолжает медленно (по космическим меркам, конечно) разлетаться и рассеиваться в пространстве. Его мы наблюдаем как один из видов туманностей, их размеры обычно не превышают нескольких десятков парсек. Эти туманности «живут» десятки (реже сотни) тысяч лет, после чего бесследно рассеиваются в межзвездной среде. Поэтому их сегодня и наблюдается так мало — все они являются следами взрывов, случившихся в недавнее (по галактическим меркам) время.
По крайней мере несколько десятков из известных остатков сверхновых — результаты взрывов именно белых карликов. И хотя не всегда легко определить, какой именно остаток перед нами, астрономы ориентируются на особенности их спектра. В остатках сверхновых типа Ia, например, довольно много железа и элементов «железного пика».
Физика взрыва белого карлика и, в целом, звездной эволюции известна достаточно неплохо. И поэтому астрофизики вполне в состоянии предсказать и как часто такие вспышки случаются (раз в несколько столетий; это связано с процессом звездообразования, например), и сколько ядер и каких именно элементов окажется в межзвездной среде после вспышки. То есть, в конечном итоге, ученые в состоянии предсказать химический состав нашей Галактики. Вернее, они пытаются это сделать.
Но здесь есть свои тонкости, если не сказать проблемы. В принципе, есть несколько способов «взорвать» белый карлик, масса которого превысила чандрасекаровский предел — максимальную массу, примерно равную 1,4 массам Солнца, за которой объекты такого типа становятся неустойчивыми. Взрыв может начаться или на поверхности белого карлика (если достаточно плотным и горячим оказывается вещество, перетянутое им со звезды-компаньона), или в его центре (если там повысится плотность из-за сжатия). Во втором случае центральная плотность существенно влияет на обилие тех тяжелых элементов, которые образуются в ходе взрыва: чем плотнее ядро, тем больше будет элементов «железного пика».
И наблюдения говорят, что доля таких элементов в Галактике больше, чем следует из теории при взрывах не самых массивных и не самых плотных белых карликов. То есть как раз таких, которые, собственно, и наблюдаются либо «в прямом эфире», либо в виде остатков.
Такое расхождение между теорией и наблюдательными данными не могло не волновать астрономов. Возможное объяснение этого расхождения представлено в статье, опубликованной недавно группой японских астрофизиков вместе с коллегами из США в журнале The Astrophysical Journal Letters. Ученые выявили в наблюдениях, проведенных еще в 2018 году, интересную особенность остатка сверхновой типа Ia, обозначенного 3C 397 (рис. 1).
Этот остаток находится в созвездии Орла на расстоянии около 8 кпк от нас. Он уже давно привлекает внимание астрономов. Отчасти — из-за своей необычной прямоугольной формы, которую списывают на особенности взаимодействия вещества взорвавшегося белого карлика с плотной межзвездной средой. То, что этот остаток именно от сверхновой типа Ia, более-менее стало понятно только в 2020 году (H. Martínez-Rodríguez et al., 2020. Evidence of a Type Ia Progenitor for Supernova Remnant 3C 397). Этот вывод был сделан как раз по обилию элементов типа магния, кремния, хрома, железа: их соотношение в этом остатке хорошо описывается моделью взрыва белого карлика.
В 2018 году были проведены спектральные наблюдения этого остатка на рентгеновском орбитальном телескопе XMM-Newton. Спектральными они были для того, чтобы можно было лучше изучить химический состав этого остатка, а рентгеновскими — потому что спектральные линии элементов «железного пика» хорошо видны именно в рентгеновском диапазоне. Рис. 2. «Портреты» остатка сверхновой 3С 397, построенные по наблюдениям обсерватории XMM-Newton
Рис. 2. «Портреты» остатка сверхновой 3С 397, построенные по наблюдениям обсерватории XMM-Newton в разных спектральных диапазонах. (а) — изображение в линии железа (диапазон энергии фотонов 6,4–6,7 кЭв). (b) — изображение в линии хрома (5,4–5,7 кЭв). Чем ярче область (в относительных единицах детектора), тем больше атомов соответствующего элемента в ней. (с) — отношение содержаний хрома и железа в остатке. Видно, что в южной части содержание хрома довольно велико. Рисунок из обсуждаемой статьи в The Astrophysical Journal Letters
В спектре 3C 397 хорошо видны линии железа, никеля, хрома и прослеживается линия титана. Причем, по отношению к содержанию железа (измеренному в количестве атомов) содержание хрома и титана в этом остатке составляет около нескольких процентов. Они распределены по остатку неравномерно: яркий сгусток виден в южной части остатка (рис. 2). Но, быть может, важнее даже их обилие по отношению к никелю, поскольку количество атомов никеля, произведенных при вспышке сверхновой типа Ia, чувствительно к центральной плотности белого карлика: чем меньше плотность, тем больше никеля.
Рис. 3. Теоретически рассчитанное содержание титана (по отношению к содержанию железа) в остатке сверхновой типа Ia в зависимости от центральной плотности исходного белого карлика. Каждая точка на графиках представляет результат моделирования взрыва сверхновой. Цвет точки показывает общую долю железа в выбросе. Горизонтальная полоса — измеренное значение относительного содержания титана в остатке 3C 397. Левый график построен для менее плотного белого карлика и хорошо видно, что ни одно из расчетных значений не превосходит наблюдаемого значения. Рисунок из обсуждаемой статьи в The Astrophysical Journal Letters
В случае остатка 3C 397 расчеты могут воспроизвести наблюдаемое относительное содержание упомянутых элементов только в том случае, если плотность вещества в первоначальном карлике превышала 5·109 г/cм3 (рис. 3). Это где-то в 2,5–3 раза больше, чем центральная плотность для «стандартного» белого карлика. Теория не запрещает существовать карликам с настолько высокой центральной плотностью, но вот остаток от взрыва такого объекта наблюдается впервые.
Рис. 4. Теоретически рассчитанная зависимость относительного содержания титана (синие кружочки), хрома (зеленые квадратики) и марганца (красные треугольники) от центральной плотности белого карлика до взрыва (содержание всех титана и хрома элементов берется по отношению к содержанию никеля, содержание марганца дополнительно умножено на 0,01). Горизонтальные полосы — значения, измеренные для остатка 3C 397. Рисунок из обсуждаемой статьи в The Astrophysical Journal Letters
Если вывод авторов о том, что породивший 3C 397 белый карлик имел повышенную плотность, верен, то это сразу решает две проблемы. Во-первых, становится понятно, откуда можно взять недостающее обилие тяжелых элементов типа хрома и титана. А во-вторых, очевидно, такие вспышки происходят — мы это (точнее, последствия, конечно) видели! По оценкам авторов, если именно такие карлики взрываются в 20% случаев, то этого уже достаточно, чтобы объяснить химический состав нашей Галактики.
Впрочем, на этом еще рано говорить «всем спасибо, расходимся». В принципе, схожее содержание элементов «железного пика» может оказаться и в остатке от взрыва особого вида сверхновой — так называемой сверхновой с захватом электронов (electron-capture supernova). Эти сверхновые теоретически могут порождаться взрывами ядер звезд с массами 8–10 масс Солнца. Ядра таких звезд по своей сути являются массивными белыми карликами с достаточно высокой плотностью в центре. Их взрыв может быть спровоцирован обильным захватов электронов протонами в самом центре (точнее, ядрами магния и неона). А электронный газ — это как раз то, что удерживает белый карлик в равновесии: как только электронов становится меньше, ядро теряет устойчивость и коллапсирует.
Но это всё в теории. На практике вспышки сверхновых такого типа пока не наблюдались. Во всяком случае они не наблюдались с точки зрения текста обсуждаемой статьи о 3C 397. Но ее авторы не могли не знать о том, что в марте того же 2018 года астрономами была открыта сверхновая, получившая обозначение SN 2018zd, которая по всем признакам подходит под сверхновую с захватом электронов, — первый кандидат на сверхновую такого типа в истории наблюдений! Забавно, что один из ученых участвовал в обоих исследованиях. Правда, в архиве электронных препринтов статья об открытии SN 2018zd появилась в ноябре 2020 года, а официально опубликована в журнале Nature Astronomy она была только в конце июня 2021 года — то есть уже после выхода статьи про остаток 3C 397. Возможно, у авторов обсуждаемой статьи состоялся сложный диалог с рецензентом, и они решили перестраховаться, считая, что пока результат не в журнале, его как бы и нет. Между тем, в работе про SN 2018zd была дана и оценка частоты таких «особенных» сверхновых: по расчетам авторов они составляют несколько процентов от стандартных коллапсирующих сверхновых (core-collapse supernova), что довольно много.
Рис. 5. Вспышка сверхновой SN 2018zd в галактике NGC 2146, удаленной от нас примерно на 70 млн световых лет. Справа приведены полученные в разное время изображения участка неба, в котором находится сверхновая: b, c и d — снимки «Хаббла» (единичные кадры, сделанные через разные фильтры), e — снимок «Спитцера» на длине волны 3,6 мкм. Изображение из статьи D. Hiramatsu et al., 2021. The electron-capture origin of supernova 2018zd
Но, возможно, главное в том, что авторам статьи в Nature Astronomy удалось, во-первых, показать существование сверхновых с захватом электронов. А во-вторых, — обосновать, что их прародителями являются редкие звезды, принадлежащие к классу так называемых SAGB-звезд (то есть звезд, лежащих на супер-асимптотической ветви гигантов диаграммы Герцшпрунга — Рассела, см. Super-AGB star). И теперь ученые, разрабатывающие теории эволюции звезд, должны с отдельным вниманием относиться к звездам с массами в узком диапазоне от 8 до 9 масс Солнца (как раз тем, которые и порождают SAGB-звезды) и отдельно учитывать их вклад в химический состав Галактики. Во всяком случае, им стоит делать это вдумчиво и аккуратно. Источник: Yuken Ohshiro, Hiroya Yamaguchi, Shing-Chi Leung, Ken'ichi Nomoto, Toshiki Sato, Takaaki Tanaka, Hiromichi Okon, Robert Fisher, Robert Petre, and Brian J. Williams. Discovery of a Highly Neutronized Ejecta Clump in the Type Ia Supernova Remnant 3C 397 // The Astrophysical Journal Letters. 2021. DOI: 10.3847/2041-8213/abff5b.